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ABSTRACT 
 

Optimization has become increasingly significant and applicable in resolving numerous 

engineering challenges, particularly in the structural engineering field. As computer science 

has advanced, various population-based optimization algorithms have been developed to 

address these challenges. These methods are favored by most researchers because of the 

difficulty of calculations in classical optimization methods and achieving ideal solutions in a 

shorter time in metaheuristic technique methods. Recently, there has been a growing interest 

in optimizing truss structures. This interest stems from the widespread utilization of truss 

structures, which are known for their uncomplicated design and quick analysis process. In 

this paper, the weight of the truss, the cross-sectional area of the members as discrete 

variables, and the coordinates of the truss nodes as continuous variables are optimized using 

the HGPG algorithm, which is a combination of three metaheuristic algorithms, including 

the Gravity Search Algorithm (GSA), Particle Swarm Optimization (PSO), and Gray Wolf 

Optimization (GWO). The presented formulation aims to improve the weaknesses of these 

methods while preserving their strengths. In this research, 15, 18, 25, and 47-member trusses 

were utilized to show the efficiency of the HGPG method, so the weight of these examples 

was optimized while their constraints such as stress limitations, displacement constraints, 

and Euler buckling were considered. The proposed HGPG algorithm operates in discrete and 

continuous modes to optimize the size and geometric configuration of truss structures, 

allowing for comprehensive structural optimization. The numerical results show the suitable 

performance of this process. 
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1. INTRODUCTION 
 

Finding a quick, short, and economical way to achieve the best results is the aim of 

optimization. It is a fundamental concept that is widely used in various fields such as 

engineering, economics, and computer science. However, many problems that need 

optimization have a large search space or complex constraints, making finding the optimal 

solution challenging.  

Metaheuristic methods are a class of optimization algorithms that are designed to solve 

these types of problems. These algorithms are based on the idea of imitating natural or 

artificial processes, such as the behavior of ants, bees, or genetic mutations, to explore the 

search space efficiently and effectively. Metaheuristics have been applied to various 

optimization problems, including engineering design, resource allocation, and scheduling. 

With the rapid development of computer technology, metaheuristic methods have become 

more popular and have proven to be effective in solving complex optimization problems. 

Nowadays, optimization plays a crucial role in meeting human needs.  Among the 

applications of optimization in engineering sciences, we can mention its use in the design of 

structures in civil engineering. The purpose is to reduce the weight of the structure and as a 

result of that reduce the economic costs [1]. Unlike traditional mathematical methods, meta-

heuristic algorithms have the remarkable ability to discover the best possible solution 

without relying on complex mathematical derivatives or needing a specific initial value. 

They achieve this with simpler and more intuitive formulas, making them a powerful tool 

for finding optimal solutions. Although the answer to these methods cannot be considered as 

the absolute best solution to the problem, they can be obtained with a simpler process and in 

a suitable and less time than mathematical methods [2]. Optimization algorithms are 

extensively utilized in a diverse array of civil and structural engineering fields, playing a 

pivotal role in enhancing efficiency and performance across various applications. 

Among the research records in the field of structural optimization, there are cases such as 

the Modified Adolescent Identity Search Algorithm (MAISA) for optimizing the weight of 

steel frame structures and large-scale problems by Dehghani et al [3,4]. SeyedOskouei et al 

introduced the improved Artificial Rabbits Optimization algorithm (I-ARO) and utilized it 

for truss optimization [5]. The proposed algorithm HTC is a hybrid of two methods based on 

Teaching–Learning-Based Optimization (TLBO) and Charged System Search (CSS) by 

Dastan et al [6,7]. Optimizing the weight of truss structures using the presented method 

HGPG, hybridizing the three methods of Gravity Search Algorithm (GSA), Particle Swarm  

Optimization (PSO), and Gray Wolf Optimizer (GWO) algorithm by Biabani et al [8]. 

Optimizing the weight of truss structures using the CGPGC method, hybridizing GSA, PSO, 

GWO, and Cellular Automation method (CA) by Biabani et al [9]. Optimal design of trusses 

with mixed variables using Hybrid Algorithm for Sizing and Layout Optimization of Truss 

Structures Combining Discrete PSO and Convex Approximation (IDPSO and MMA) by 

Shojaee et al [10]. Shahrouzi and Taghavi developed the Modified Sine-Cosine Algorithm 

(MSCA) for engineering problems [11]. Optimizing the size and geometry of truss structures 

using the combination of DNA calculation algorithm and General Convex Approximation 

(GCA) method by Darvishi and Shojaee [12]. The geometry and cross-sectional area of truss 

members with a specific topology using the genetic algorithm by Wu and Chiu [13], 

Hasanchabi and  Erbatur [14], and Kaveh and Kalatjari [15]. Optimizing the size of the truss 
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structure using the ECBO method by Kaveh et al [16]. Optimizing the weight of the 

structure using colliding bodies algorithms was pointed out by Kaveh and Mahdavi [17]. 

Today, the utilization of metaheuristic algorithms in Structural Health Monitoring (SHM) is 

another attractive application of these methods for solving real-world problems. For 

example, Mahdavi et al employed metaheuristic algorithms for Optimal Senser Placement 

(OSP) and impact identification [18–20]. Mahdavi and Kaveh used metaheuristic algorithms 

for damage identification [21]. 

In recent years, size and geometry optimization of trusses has become an attractive issue. 

Therefore, several techniques have been presented in this theme. It is important to note that 

the formulation of the problem affects the optimum solution. Weak and unfit formulations 

cause unreliable or uneconomical designs. A suitable formulation considers geometry 

limitations and other constraints like displacement, stress, and Euler’s buckling constraint to 

minimize weight and structural costs [1]. Size optimization means finding the optimal cross-

section of the truss members or frames in a skeletal structure or finding the appropriate 

distribution of thickness in a shell structure so that the weight of the structure has the least 

value and the stiffness of the structure satisfies all the constraints of the problem [22]. Also, 

a structure can be optimized by reducing the number of nodes and elements or finding 

suitable coordinates of nodes. In size optimization, the design variables are cross-sections of 

members while in geometry optimization, the target is to find the optimal coordinate of 

nodal points in the design domain in such a way that its performance is maximum. In this 

research, the simultaneous optimization of the size and geometry of truss structures has been 

done by using the HGPG algorithm. The cross-sectional areas of the members are 

considered as discrete variables and the range of changes in the coordinates of the nodes in 

different directions (X, Y, Z) are considered as continuous variables.  

The paper provides a brief background of fundamental concepts underlying the HGPG 

method in section 2. The third section offers a detailed review of the HGPG formulation and 

the simultaneous optimization of truss structures' size and geometry. Section 4 presents the 

measurement of the method's efficiency through numerical examples and a comprehensive 

comparative analysis with other methodologies. Finally, the paper culminates in a thorough 

discussion of the conclusions and their broader implications in the final section. 

 

 

2. BASIC IDEAS 
 

The HGPG algorithm is a combination of three metaheuristic methods: PSO, GSA, and 

GWO, which were introduced by Eberhart and James Kennedy [23], Rashedi et al [24], and 

Ali Mirjalili et al [25] respectively. This hybridization allows for the exploitation of the 

advantages of each method while minimizing their limitations. A standout feature of this 

method is its capacity to effectively balance exploration (global search) and exploitation 

(local search) during the optimization process. This is achieved through the use of a stable 

scheme that frequently adjusts the limit of each parameter. 

Before introducing the HGPG optimization method, the article briefly outlines the core 

principles behind the PSO, GSA, and GWO methods. This allows the reader to better 

understand how the HGPG method integrates these three methods to enhance the 

optimization process. The PSO algorithm is a population-based optimization method that 
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uses the concept of swarm intelligence to search for the optimal solution. GSA, on the other 

hand, is a gravity-based algorithm that mimics the behavior of celestial objects to perform 

optimization. Lastly, GWO is inspired by the hunting behavior of grey wolves and uses a 

hierarchical structure to perform optimization. 

The combination of PSO, GSA, and GWO in the HGPG algorithm forms a highly robust 

and efficient optimization framework. This approach allows for the optimization of both size 

and geometry simultaneously in truss structures, which is a challenging problem in 

engineering. Testing on standard optimization benchmarks has demonstrated that the HGPG 

algorithm outperforms other optimization techniques in terms of accuracy and efficiency. Its 

superior performance highlights the algorithm’s high potential for addressing complex 

engineering optimization problems. The HGPG algorithm’s capacity to effectively manage 

multiple constraints and deliver high-quality solutions positions it as a valuable tool for 

advanced optimization applications. 

 

 

3. THE PROPOSED METHOD: HYBRID GRAVITY SEARCH, PARTICLE 

SWARM, AND GRAY WOLF ALGORITHM (HGPG) 
 

The HGPG algorithm, introduced by Biabani et al in 2022 [8], incorporates the strengths and 

mitigates the limitations of multiple optimization techniques by combining them for 

enhanced performance. Recognizing that each algorithm offers distinct advantages and 

trade-offs, hybridization or the use of advanced computational methods has become a 

common approach to achieve superior outcomes. In the development of the HGPG 

algorithm, the GSA (Gravitational Search Algorithm) serves as the foundational framework 

due to its capability to leverage collective intelligence for locating optimal solutions within 

both vector and multidimensional spaces. GSA operates by allowing particles to move in a 

systematic and classical manner within a gravitational field, governed by their masses. The 

force exerted between particles functions as a communication signal, guiding their 

movements and ultimately determining their positions in the search space. This interaction 

enables particles to intelligently explore and exploit the search space to converge on an 

optimal solution. One of the key features of GSA is its consideration of both active and 

passive gravitational mass for each particle, which allows for the measurement and 

interaction of gravitational forces without reliance on problem-specific parameters. This 

parameter-free nature makes it adaptable across a wide range of optimization problems. The 

proposed HGPG algorithm builds upon this gravitational law while integrating the top three 

search factors of the GWO (Grey Wolf Optimizer) and the velocity calculation mechanism 

from PSO (Particle Swarm Optimization) to further enhance search performance. 

The hybrid method has shown impressive results by optimizing both the weight and 

geometry of truss structures at the same time, handling continuous and discrete variables 

effectively. Additionally, the method demonstrates excellent convergence speed towards the 

global optimum. In this section, a detailed explanation of the HGPG algorithm has been 

presented and explores its application for the simultaneous optimization of weight and 

geometry in truss structures. 
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3.1 The HGPG Algorithm 

One possible approach to determine Fij
d (t), which indicates the force transmitted from 

mass i to mass j at time t and dimension d, is to utilize, 

( ) ( )
( ) ( ) ( ( ) ( ))

( )

M t M tpi ajd d d
F t G t x t x tij j iRpower

R tij 


= −

+
 (1) 

At time t, Rpower is a constant value of 0.1 and is a tiny value, while G(t) represents the 

constant of gravity. Mpi(t) refers to the passive gravitational mass of i and Maj(t) refers to the 

active gravitational mass of j. Rij is the Euclidean distance between the two masses i and j in 

the equation. 

( ) ( ) . ( )
2

R t x t x tij i j=  (2) 

The expression for the coefficient G(t) is given below: 

max
( ) ln( )

−
=

iter

iter
G t  (3) 

In this regard, max-iter represents the iterations’ maximum number and iter represents the 

iterations’ current number. Employing this coefficient eliminates the necessity to modify the 

fixed coefficients that are integral to the G(t) formula utilized in the GSA algorithm, 

providing an additional benefit to the algorithm being proposed. Therefore, to calculate all 

of the forces acting on the mass i at time t and at dimension d, and considering a random 

coefficient in the interval [0,1], we can write, 

( ) ( )1
d dN

F t rand F ti j ijj=  =
 (4) 

In order to enhance the algorithm's ability to discover more optimal solutions, only the set 

of top-performing members is permitted to impact the other members. 

( ) ( ),
d d

F t rand F tjj nbest j ii ij=     (5) 

The value of nbest is determined by using the following formula: 

(2 (1 ) * ( 2)) / 100nbest np iter max iter Cp= + − − −  (6) 

where cp is a fixed number and np is the particle number. After determining nbest, the 

acceleration of the objects in dimension d can be calculated using the following formula. As 

per Newton's second law, the acceleration of an object is equal to the net force acting on the 

object divided by the object's mass, and can be expressed as follows: 

( )
( )

( )

d
F td ia ti
M tii

=  (7) 

Here, Mii(t) refers to the inertial mass of the i-th particle. The equation makes use of 

stochastic coefficients to ensure that particle movement in the search space remains random.  
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( ) ( ) ( ) ( ) , 1, 2, ...,M t M t M t M t i Nii pi ai i= = = =  (8) 

( ) ( )
( )

( ) ( )

value t worst tim ti
best t worst t

−
=

−
 

(9) 

( )
( )

( )1

m tiM ti N
m tjj

=
 =  

(10) 

Based on the aforementioned points, the algorithm's efficiency can be enhanced by 

computing the velocity in three steps, inspired by the third step of the PSO algorithm. The 

first step involves calculating the velocity by summing the previous velocities with the 

gravitational force, using the following equation: 

( 1) ( ) ( )
d

v t rand v t a ti i i+ =  +  (11) 

Next, in the second step, the velocity calculated in the first step is updated using the 

following equation: 

( 1) ( ) ( ) (2 ) ( )
d

v t rand v t C a t C x x tii ik k mean gbest
+ =  +  + −  −

−
 (12) 

The value of the coefficient Ck is obtained by using the following equation: 

2 0.25 log
ncn

C
k t
= −   (13) 

Furthermore, the initial value of ncn is set to 1 and added to the initial population at all 

times. Finally, the PSO method is used with the velocity calculated in the previous step. 

( 1) ( ) ( ( )) ( ( ))
1 1 2 2IGSA GSA

d d d d d d
V t V t C x x t C x x ti i i ipbest gbesti

  + = +   − +   −  (14) 

where, , and  are random variables in the range [0,1] and C1 and C2 are constant 

coefficients. In addition, since the GWO algorithm considers the effect of the top 3 particles 

to find the best solution, xd
mean-gbe is used instead of xd

gbest in the PSO formula, to use this 

point in the proposed algorithm in the velocity part. 

( ) / 3
d d d d

X X X X
mean gbest alpha beta delta

= + +
−

 (15) 

where, xd
alpha, xd

beta, and xd
delta represent the top 3 particles position in the algorithm. 

Therefore, the new position of each particle can be calculated as the sum of the calculated 

values using vector summation. 

 1


2
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( 1) ( ) ( 1)
d d d

x t x t v ti i i+ = + +  (16) 

The algorithm has been upgraded to get rid of the underperforming particle and replace it 

with a better one. To make this happen, a random value is generated after identifying the 

weakest particle, known as the gamma particle. If the randomly generated value is lower 

than a computed value based on the current iteration and the maximum number of iterations, 

the gamma particle's value is replaced with a new one. Otherwise, it is substituted with the 

average value of the xd
alpha, x

d
beta, and xd

delta particles. The HGPG method is summarized in 

pseudocode 1. 

 
Pseudocode 1: The HGPG algorithm 

1: Initialize particles with random solutions 

2: Evaluate the fitness of each particle 

3: Set the initial best positions of each particle and the global best position found by any particle 

4: Repeat until the stopping criteria are satisfied: 

5: Calculate and update the particle’s mass and particle’s force. 

6: Determine the superior alpha, beta, and delta particles 

7: Calculate and update the velocity of particles. 

8: Update the position of particles. 

9:  Evaluate the fitness of each particle 

10:  Update the best positions if the current solution is better  

11:  Update the global best position if a better solution is found 

12: Return the best solution found 

 

3.2 Simultaneously Optimization of Discrete and Continuous Variables  

In the optimization of truss structures for size, the objective is to minimize the weight of 

the structure by taking into account the cross-sectional area of the truss members as design 

variables, while ensuring that the problem's constraints are met. In some cases, various 

aspects of the cross-section are considered as design variables. For instance, when 

addressing column buckling, the design variables include the cross-sectional area and 

moment of inertia of the cross-section. It is crucial to note that these cross-sectional areas are 

typically treated as discrete variables, reflecting the fact that, in practical design scenarios, 

truss structures are constructed using standard steel profiles available in the market. These 

profiles come in a predefined, discrete set of cross-sectional areas, from which the most 

suitable ones must be selected. Consequently, the size optimization process focuses on 

selecting the best possible combination of these predefined profiles to achieve the desired 

structural performance with minimal weight. 

Geometric optimization of truss structures involves minimizing the weight of truss 

structures while working within given constraints, using the coordinates of the truss nodes as 

design variables. In this form of optimization, the node coordinates are treated as continuous 

variables since they can take any value from a range of real numbers, allowing for flexibility 

in adjusting the positioning of nodes and consequently altering the lengths of truss elements. 

Through this process, an efficient and lightweight truss structure with an ideal configuration 

can be achieved. In optimization, the geometry of the design set is not fixed and is usually 

considered as a continuous variable, and only the boundaries of the design domain can be 

changed.  In this study, both the cross-sectional areas of the truss members (as discrete 
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variables) and the node coordinates (as continuous variables) are considered for weight 

optimization. 

To simultaneously optimize the weight and size of truss structures, the following steps 

are taken: 

Step 1: Define the list of available profiles for cross-sections and set the index number of 

the profile list for the lower and upper bound of cross-sections variables. Continuous 

variables are applied according to the normal procedure . 
Step 2: Separate cross-sectional variables from geometry variables. 

Step 3: Round discrete variables to the nearest integer number and replace it with 

previous values. 

Step 4: Choose an appropriate cross-section from the profile list according to its index 

number. 

Step 5: Evaluate the fitness using discrete variables and continuous geometry variables. 

Note that all the above steps were applied in the objective function, except step 1. 

 

 

4. NUMERICAL EXAMPLES 
 

In this section, four benchmark examples of 15, 18, 25, and 47-bar trusses have been 

discussed and the results of weight and geometry optimization using the HGPG method have 

been compared with those obtained from other similar methods. In the following examples, 

the standard deviations (Std) are calculated from 30 independent runs. The control 

parameters are considered in Table 1. 
Table 1: Controlling parameters 

Parameter Description Value 

R power Power of R coefficient  0.01 

W Initial weight 0.9 

C1, C2 Learning coefficient 2 

Number of Run _ 30 

 
4.1. Fifteen-bar Truss 

The study's first example involves analyzing a 15-bar truss that's under a concentrated load 

of P= -10 ksi applied at node 8 (see Figure 1). The material density is ρ= 0.1 Ib/in3, and the 

modulus of elasticity is E= 10000 ksi. Cross-sections are chosen from a range of available 

profiles in Table 2, with allowable tensional and compressive stress limited to 25 ksi. For more 

design details, refer to Table 2. The HGPG method is compared with similar algorithms in Table 

3. Stress values for each truss element are presented in Table 4, and Figure 2 illustrates that 

stress ratios for all elements are within the allowable limit. The initial and optimized truss 

geometries are shown in Figure 3, while the convergence curve in Figure 4 depicts the HGPG 

method's convergence rate. Furthermore, Figure 5 provides insights from 30 independent runs, 

showcasing average weight, worst weight, and standard deviation at 82.4, 87.76, and 2.8 Ib, 

respectively. 
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Figure 1: Initial Geometry and node numbers of the 15-bar truss 

Table 2: The primary data of the 15-bar truss 

Node          Fx (Kips)            Fy (Kips)            Fz (Kips)  
8                0                         -10                     0 

Loading data 

Geometry variables 
x2= x6; x3=x7; y2;y3;y4;y6;y7;y8 

Size variables  

A1; A2; A3; A4; A5; A6; 

 A7; A8; A9; A10; A11; 

 A12; A13; A14; A15 

Design variables 
 

Stress constraints 
(σt)i ≤ 25 Ksi;              i=1,2,…,15 

|(σc)i| ≤ 25 Ksi;           i=1,2,…,15 

Constraint data 

Side constraints of geometry variables 
100 in ≤ x2 ≤ 140 in 

220 in ≤ x3 ≤ 260 in 

100 in ≤ y2 ≤ 140 in 

100 in ≤ y3 ≤ 140 in 

50 in ≤ y4 ≤ 90 in 

-20 in ≤ y6 ≤ 20 in 

-20 in ≤ y7 ≤ 20 in 

20 in ≤ y8 ≤ 60 in 
Ai є S={0.111, 0.141, 0.174, 0.22, 0.27, 0.287, 0.347, 0.44, 0.539, 0.954, 1.081, 1.174, 1.333, 

1.488, 1.764, 2.142, 2.697, 2.8, 3.131, 3.565, 3.813, 4.805, 5.952, 6.572, 7.192, 8.525, 9.3, 10.85, 

13.33, 14.29, 17.17, 19.18}in2           

List of the 

available 

profiles 

Table 2: Comparison of optimized designs for the 15-bar truss 

 Design 

variables 
ARSAGA [26] 

Improved 

GA [27] 

CPSO 

[28] 

DNA-GCA 

[12] 
Present work 

Size variables 

(in2) 

A1 0.954 1.081 1.174 1.081 0.954 

A2 1.081 0.539 0.539 0.539 0.539 

A3 0.44 0.287 0.347 0.27 0.287 

A4 1.174 0.954 0.954 0.954 1.333 

A5 1.488 0.954 0.954 0.954 0.539 

A6 0.27 0.22 0.141 0.22 0.174 

A7 0.27 0.111 0.141 0.111 0.22 

A8 0.347 0.111 0.111 0.111 0.111 

A9 0.22 0.287 1.174 0.27 0.27 
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A10 0.44 0.22 0.141 0.287 0.539 

A11 0.22 0.44 0.44 0.44 0.22 

A12 0.44 0.44 0.44 0.287 0.111 

A13 0.347 0.111 0.141 0.141 0.44 

A14 0.27 0.22 0.141 0.27 0.22 

A15 0.22 0.347 0.347 0.27 0.287 

Geometry 

variables (in) 

x2 118.346 133.612 102.287 123.529 103.423 

x3 225.209 234.752 240.505 239.110 259.743 

y2 119.046 100.449 112.584 123.791 131.452 

y3 105.086 104.738 108.043 115.211 117.221 

y4 63.375 73.762 57.795 72.968 53.347 

y6 -20 -10.067 -6.430 -8.153 8.568 

y7 -20 -1.339 -1.801 3.896 16.659 

y8 57.722 50.402 57.799 42.603 53.328 

Results 
Wbest (Ib) 104.573 79.82 77.615 79.807 77.604 

Analysis N/A 8000 4500 N/A 6980 

Table 3: The stress value of the 15-bar truss 

Member Stress (Ib/in2) Member Stress (Ib/in2) 

1 22020.10 9 21915.66 

2 24998.75 10 24873.83 

3 24372.13 11 24998.75 

4 -22582.72 12 22171.57 

5 -22206.45 13 -24706.26 

6 -24908.52 14 21939.49 

7 -24949.17 15 -21887.95 

8 14163.02   

 

 
Figure 2: The stress ratio of the 15-bar truss in the optimal solution 
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Figure 3: Initial and optimum geometry of the 15-bar truss 

 
Figure 4: The convergence curve of the 15-bar truss 

 

Figure 5: The optimal weight of the 15-bar truss in each independent run 
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4.2. Eighteen-bar Truss 

The 18-bar truss with 12 variables has been illustrated in Figure 6. The material density is 

ρ= 0.1 Ib/in3 and the module of elasticity is E= 10000 ksi. The truss elements are 

categorized into 4 groups and their cross-sections are selected from the set of Ai є S= {2.00, 

2.25, …, 21.50, 21.75}in2. A concentrated load P= -20 ksi was applied at nodes 1, 2, 4, 6, 

and 8. The allowable tensional and compressive stress is limited to 20 Ksi, and the Euler 

buckling stress constraints should be considered. Other design information is summarized in 

Table 5. Upon reviewing Table 6 data, the HGPG method optimized the 18-bar truss by 

approximately 5.6 lb, outperforming the ABC algorithm.The stress value of each element is 

presented in Table 7, and Figure 7 depicts the stress ratios. The initial and optimized 

geometry of the 18-bar is illustrated in Figure 8, while the convergence curve of the best run 

is presented in Figure 9. Additionally, Figure 10 displays the optimal outcome of the 18-bar 

in each independent run. The average weight, the worst weight, and the standard deviation 

were calculated to be 4651.65 lbs, 5058.32 lbs, and 107.62 lbs, respectively. 

 

 
Figure 6: Initial Geometry and node numbers of the 18-bar truss 

 

Table 5: The primary data of the 18-bar truss 

Node         Fx (kips)          Fy (kips)        Fz (kips)  

1                0                         -20                     0 

2                0                         -20                     0 

4                0                         -20                     0 

6                0                         -20                     0 

8                0                         -20                     0 

 

Loading data 
 

 Geometry variables 

 x3; y3; x5; y5; x7; y7; 

 x9; y9 

Size variables 

A1= A4= A8= A12= A16; A2= 

A6= A10= A14= A18; A3= A7= 

A11= A15; 

 A5= A9= A13= A17 

Design variables 

Stress constraints 

(σt)i ≤ 20 Ksi;              i=1,2,…,18 

|(σc)i| ≤ 20 Ksi;            i=1,2,…,18 

Constraint data 
Euler buckling stress constraints 

|(σc)i| ≤ αAi E/Li
2, α=4;           i=1,2,…,18 

Side constraints of geometry variables 

775 in ≤ x3 ≤ 1225 in 

-225 in ≤ y3 ≤ 245 in 

525 in ≤ x5 ≤ 975 in 
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-225 in ≤ y5 ≤ 245 in 

275 in ≤ x7 ≤ 725 in 

-225 in ≤ y7 ≤ 245 in 

25 in ≤ x9 ≤ 475 in 

-225 in ≤ y9 ≤ 245 in 

Ai є S={2.00, 2.25, …, 21.50, 21.75}in2           List of the available profiles 

Table 4: Comparison of optimized designs for the 18-bar truss 

 Design 

variables 

Rajeev and 

Krishnamoorthy 

[29] 

Yang 

[30] 

CPSO 

[28] 
D-ICDE [31] ABC [32] Present work 

Size 

variables 

(in2) 

A1 12.5 12.61 12 13 12.5 12 

A2 16.25 18.1 17.25 17.5 17.75 17.75 

A3 8 5.47 6.25 6.5 5.75 5.5 

A4 4 3.54 4.75 3 3.75 4.5 

Geometry 

variables 

(in) 

x3 891.9 914.5 902.914 914.06 912.997 909.864 

y3 145.3 183 174.72 183.46 183.681 414.602 

x5 610.6 647 632.713 640.53 642.714 642.853 

y5 118.2 147.4 141.296 133.74 143.892 203.123 

x7 385.4 414.2 407.132 406.12 411.692 183.984 

y7 72.5 100.4 85.933 92.63 97.148 148.806 

x9 184.4 200 197.672 196.69 200.909 96.533 

y9 23.4 31.9 19.809 37.06 30.219 22.228 

Results 
Wbest (Ib) 4616.8 4552.8 4561.131 4554.29 4537.064 4531.467 

Analysis N/A N/A 4500 8025 2700 9975 

Table 5: The stress value of the 18-bar truss 

Member Stress (Ib/in2) Member Stress (Ib/in2) 
1 8587.17 10 -12948.26 

2 -5913.75 11 -5970.43 

3 -6154.17 12 19999.91 

4 10862.77 13 -1023.80 

5 10075.22 14 -14130.17 

6 -9788.61 15 -3129.38 

7 -9878.43 16 20008.23 

8 17646.57 17 20000.00 

9 3342.32 18 -17002.31 

 

 
Figure 7: The stress ratio of the 18-bar truss in the optimal solution 
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Figure 8: Initial and optimum geometry of the 18-bar truss 

 
Figure 9: The convergence curve of the 18-bar truss 

 

 
Figure 10: The optimal weight of the 18-bar truss in each independent run 
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4.3. Twenty-five-bar Truss 

The 25-bar truss with 8 cross-sectional variables and 5 geometrical variables is considered 

for the third example. The geometry and the node numbers are shown in Figure 11, and the nodal 

coordinates are defined in Table 8. The 25-bar truss has a 0.89 cm displacement constraint of all 

nodes in all directions. The grouped members are in Table 9. The allowable stress is 275.8 Mpa 

for tension and compression stresses. The material density and the module of elasticity are 2720 

kg/m3 and 68.95 Gpa, respectively. Other necessary data for design are summarized in Table 10. 

Table 11 exhibits the comparison of the HGPG method results with similar approaches. The 

stress of each member and displacement of each node obtained from the best design are shown 

in Table 12 and Table 13, respectively. The stress ratios are shown in Figure 12. The stress ratio 

has decreased due to displacement constraints. The initial and optimized geometry of the 25-bar 

truss and the convergence curve of the best run has been shown in Figure 13 and Figure 14, 

respectively. the average weight came in at 55.76 lb, the worst weight was 57.41 lb, and the 

standard deviation was 0.806 lb. Figure 15 demonstrates the optimal weight of the 25-bar truss 

in each independent run. 

 

 
Figure 11: Initial Geometry and node numbers of the 25-bar truss 

Table 6: The nodal coordinates of the 25-bar truss 

Node x(cm) y(cm) z(cm) 

1 -95.25 0 508 

2 95.25 0 508 

3 -95.25 95.25 254 

4 95.25 95.25 254 

5 95.25 -95.25 254 

6 -95.25 -95.25 254 

7 -254 254 0 

8 254 254 0 

9 254 -254 0 

10 -254 -254 0 

 

 [
 D

O
I:

 1
0.

22
06

8/
ijo

ce
.2

02
4.

14
.3

.6
03

 ]
 

 [
 D

ow
nl

oa
de

d 
fr

om
 e

da
ri

.iu
st

.a
c.

ir
 o

n 
20

25
-0

7-
20

 ]
 

                            15 / 27

http://dx.doi.org/10.22068/ijoce.2024.14.3.603
https://edari.iust.ac.ir/ijoce/article-1-603-fa.html


F. Biabani, A. A. Dehghani, S. Shojaee, and S. Hamzehei-Javaran 

 

476 

Table 7: The grouping of truss elements for the 25-bar truss 

Group Members (nodes) 

A1 1(1,2) 

A2 2(1,4),3(2,3),4(1,5),5(2,6) 

A3 6(2,5),7(2,4),8(1,3),9(1,6) 

A4 10(3,6),11(4,5) 

A5 12(3,4),13(5,6) 

A6 14(3,10),15(6,7),16(4,9),17(5,8) 

A7 18(3,8),19(4,7),20(6,9),21(5,10) 

A8 22(3,7),23(4,8),24(5,9),25(6,10) 

 

Table 10: The primary data of the 25-bar truss 

Node        Fx (kN)            Fy (kN)            Fz (kN) 
1               4.454                -44.537            -44.537 

2               0                       -44.537            -44.537  

3               2.227                0                       0 

6               2.672                0                       0 

Loading data 

Geometry variables 
 x4= x5=- x3=- x6; 

 y4= y3=- y5=- y6; 

 z4= z3= z5= z6 ; 

x8= x9=- x7=- x10;  

y8= y7=- y9=- y10 

Size variables 

A1; A2; A3; A4; A5; 

 A6; A7; A8 
Design variables 

Stress constraints 
(σt)i ≤ 275.8 Mpa;              i=1,2,…,25 

|(σc)i| ≤ 275.8 Mpa;           i=1,2,…,25 

Constraint data 

Displacement constraints  
|Δi| ≤ 0.89 cm;                  i=1,2,…,6 

 

Side constraints of geometry variables 
50.8cm ≤ x4 ≤ 152.4cm 

101.6cm ≤ y4 ≤ 203.2cm 

228.6cm ≤ z4 ≤ 330.2cm 

101.6cm ≤ x8 ≤ 203.2cm 

254cm ≤ y8 ≤ 355.6cm 
Ai є S={0.645I (I=1,2,…,26), 18.064, 19.355, 20.645, 21.935}cm2          i=1,2,…,25 List of the available profiles 

 

Table 8: Comparison of optimized designs for the 25-bar truss 

 Design 

variables 

Wu and 

Chow [33] 

Kaveh and 

Kalatjari 

[15] 

Rahami et 

al [34] 
CPSO [28] D-ICDE [31] Present work 

Size variables 

(cm2) 

A1 0.645 0.645 0.645 1.935 0.645 0.645 

A2 1.29 0.645 0.645 0.645 0.645 0.645 

A3 7.097 7.097 7.097 6.45 5.805 6.45 

A4 1.29 0.645 0.645 0.645 0.645 0.645 

A5 1.935 0.645 0.645 0.645 0.645 0.645 

A6 0.645 0.645 0.645 0.645 0.645 0.645 

A7 1.29 0.645 1.29 1.29 0.645 0.645 

A8 5.806 6.452 5.16 5.805 6.45 6.45 

Geometry 

variables 

(cm) 

x4 104.318 92.024 83.944 85.084 93.548 94.661 

y4 135.814 148.742 136.058 158.429 148.666 132.172 

z4 316.484 293.599 329.969 290.817 311.582 327.746 

x8 129.032 118.008 111.208 101.735 124.993 126.844 
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y8 333.959 324.993 347.569 339.522 347.320 333.469 

Results 
Wbest (kg) 61.83 56.29 54.53 56.047 53.869 53.873 

Analysis N/A N/A 10000 4500 6000 8790 

 
Table 9: The stress value of the 25-bar truss 

Member Stress (kg/cm2) Member Stress (kg/cm2) Member Stress (kg/cm2) 

1 265.97 10 4000.63 19 6756.20 

2 -2219.10 11 5306.34 20 -13216.68 

3 3456.02 12 -1499.89 21 -1356.82 

4 -8541.76 13 -2269.69 22 2622.83 

5 -3518.82 14 -5055.08 23 850.42 

6 -9851.61 15 4574.14 24 -10132.80 

7 1294.04 16 -5461.40 25 -8407.42 

8 1726.53 17 4086.20   

9 -9468.83 18 -4495.39   

 
Table 10: The nodal displacements of the 25-bar truss 

Node ∆x (cm) ∆y (cm) ∆z (cm) 

1 0.883 -0.890 -0.429 

2 0.890 -0.881 -0.422 

3 0.730 -0.443 -0.171 

4 0.688 -0.414 -0.131 

5 0.710 -0.617 -0.219 

6 0.772 -0.596 -0.264 

7 0 0 0 

8 0 0 0 

9 0 0 0 

10 0 0 0 

 

 

Figure 12: The stress ratio of the 25-bar truss in the optimal solution 
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Figure 13: Initial and optimum geometry of the 25-bar truss 

 
Figure 14: The convergence curve of the 25-bar truss 
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Figure 15: The optimal weight of the 25-bar truss in each independent run 

4.4. Forty-seven-bar Truss 

The last numerical example is the 47-bar truss (Figure 16) with 44 size and geometry 

variables. Truss elements are categorized into 27 groups. Table 14 exhibits the available 

profiles and 17 other geometric variables. The tensional stress is limited to 20 ksi and the 

compressive stress is limited to min {15, αAi E/Li
2} ksi in which α=3.96. The material 

density is ρ= 0.3 Ib/in3 and the module of elasticity is E= 30000 ksi. All primary information 

is summarized in Table 14. The proposed method is compared with other similar methods in 

Table 15. The HGPG algorithm optimized the 47-bar truss about 7.72 Ib, compared to the 

DNA-GCA algorithm. Similar to the previous examples, for a better understanding of the 

obtained stresses for each element (Table 16), the stress ratios are shown in Figure 17. The 

initial and optimized geometry of the 47-bar truss and the convergence curve of the best run 

has been shown in Figure 18 and Figure 19, respectively. According to 30 independent runs, 

the average weight, the worst weight, and the standard deviation were 2154.97, 2766.53, and 

239.17 Ib, respectively. Figure 20 shows the optimal result of the 47-bar truss in each 

independent run. 
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Figure 16: Initial Geometry and node numbers of the 47-bar truss 

Table 14: The primary data of the 47-bar truss 

Node         Fx (kips)            Fy (kips)            Fz (kips)  
17              6                         -14                     0 

22              6                         -14                     0 

Loading data 

Size variables 
A3= A1; A4=A2; A5= A6; A7; A8= A9; A10; A12= A11;  

A14= A13; A15= A16; A18= A17; A20= A19; A22= A21; A24= A23; 

 A26= A25; A27; A28; A30= A29; A31= A32; A33; A35= A34; A36= A37; A38; A40= A39; A41= A42; 

A43;A45= A44; A46= A47 

 

Design variables 
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Geometry variables 
 x2=-x1; x4=-x3; y4=y3; x6=-x5; y6=y5; x8=-x7; y8=y7;  

 x10=-x9; y10=y9; x12=-x11; y12=y11; x14=-x13; y14=y13; 

 x20=-x19; y20=y19; x21=-x18; y21=y18 

 

Stress constraints 
(σt)i ≤ 20 ksi;              i=1,2,…,47 

|(σc)i| ≤ 15 ksi;           i=1,2,…,47 

 

Constraint data 

Euler buckling stress constraints 
|(σc)i| ≤ αAi E/Li

2, α=3.96;           i=1,2,…,47 

Side constraints of geometry variables 
0 ≤ x2 ≤ 150 in 

0 ≤ x4 ≤ 150 in 

0 ≤ y4 ≤ 240 in 

0 ≤ x6 ≤ 150 in 

120 in ≤ y6 ≤ 360 in 

0 ≤ x8 ≤ 150 in 

240 in ≤ y8 ≤ 420 in 

0 ≤ x10 ≤ 75 in 

360 in ≤ y10 ≤ 480 in 

0 ≤ x12 ≤ 75 in 

420 in ≤ y12 ≤ 540 in 

0 ≤ x14 ≤ 75 in 

480 in ≤ y14 ≤ 600 in 

0 ≤ x20 ≤ 75 in 

540 in ≤ y20 ≤ 660 in 

0 ≤ x21 ≤ 150 in 

540 in ≤ y21 ≤ 660 in 
Ai є S={0.1, 0.2, 0.3, …, 5.0}in2           List of the available 

profiles 

 

 

 

Table 11: Comparison of optimized designs for the 47-bar truss 

  
Design 

variables 

Hasancebi and 

Erbatur [35] 

Salajegheh and 

Vanderplaats [36] 

SCPSO 

[28] 

DNA-

GCA [12] 

ABC 

[32] 

Present 

work 

Size 

variables 

(in2) 

A3 2.5 2.61 2.5 2.7 2.4 3.8 

A4 2.2 2.56 2.5 2.5 2.2 2 

A5 0.7 0.69 0.8 0.7 1.1 0.4 

A7 0.1 0.47 0.1 0.1 0.1 5 

A8 1.3 0.8 0.7 0.9 1.2 1.5 

A10 1.3 1.13 1.4 1.1 1.3 1.4 

A12 1.8 1.71 1.7 1.8 1.7 2 

A14 0.5 0.77 0.8 0.7 0.6 0.4 

A15 0.8 1.09 0.9 0.9 0.8 0.7 

A18 1.2 1.34 1.3 1.3 1.6 2 

A20 0.4 0.36 0.3 0.3 0.3 1.2 

A22 1.2 0.97 0.9 1.1 0.9 0.5 

A24 0.9 1 1 1 1.2 1.6 

A26 1 1.03 1.1 0.9 1 1.7 

A27 3.6 0.88 5 0.8 1 1.1 

A28 0.1 0.55 0.1 0.1 0.6 0.1 
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A30 2.4 2.59 2.5 2.7 2.8 3.2 

A31 1.1 0.84 1 0.8 0.4 0.4 

A33 0.1 0.25 0.1 0.1 0.1 0.1 

A35 2.7 2.86 2.8 3 2.9 3.1 

A36 0.8 0.92 0.9 0.9 1.5 0.5 

A38 0.1 0.67 0.1 0.1 0.6 0.2 

A40 2.8 3.06 3 3.2 3.1 3.2 

A41 1.3 1.04 1 1 0.9 0.8 

A43 0.2 0.1 0.1 0.1 0.1 0.1 

A45 3 3.13 3.2 3.3 3.3 3.2 

A46 1.2 1.12 1.2 1.2 0.8 0.4 

Geometry 

variables (in) 

x2 114 107.76 101.339 100.972 103.6063 120.840 

x4 97 89.15 85.911 80.477 81.5008 88.893 

y4 125 137.98 135.965 136.870 143.0525 160.416 

x6 76 66.75 74.797 64.391 67.0169 58.621 

y6 261 254.47 237.745 247.049 252.8466 289.544 

x8 69 57.38 64.311 55.259 54.5203 37.959 

y8 316 342.16 321.342 338.453 374.0126 397.740 

x10 56 49.85 53.335 48.733 39.8226 31.208 

y10 414 417.17 414.302 409.738 443.9461 444.700 

x12 50 44.66 46.028 43.474 30.9474 26.371 

y12 463 475.35 489.921 472.148 491.9941 473.438 

x14 54 41.09 41.835 44.835 36.7597 39.436 

y14 524 513.15 522.416 512.190 510.000 528.233 

x20 1 17.9 1 3.842 17.6763 31.749 

y20 587 597.92 598.391 591.145 598.8911 595.814 

x21 99 93.54 97.87 84.504 77.6661 88.774 

y21 631 623.94 624.055 630.347 619.89 603.940 

Results 
Wbest (Ib) 1925.79 1900 1864.1 1860.161 1871.843 1852.446 

Analysis N/A N/A 25000 N/A 2850 6940 

 
Table 12: The stress value of the 47-bar truss 

Member Stress (Ib/in 2) Member Stress (Ib/in 2) Member Stress (Ib/in 2) 

1 4074.45 17 -14250.18 33 1664.13 

2 5619.94 18 -13485.29 34 6118.15 

3 -11577.62 19 -3002.18 35 -14816.69 

4 -14793.83 20 -1063.73 36 -2288.82 

5 3299.14 21 -8027.09 37 -1767.88 

6 -2646.65 22 -12405.51 38 606.69 

7 297.15 23 12207.38 39 5414.07 

8 4023.70 24 18865.95 40 -14308.52 

9 -14601.23 25 11495.32 41 -2272.12 

10 -11945.39 26 17765.49 42 1723.52 

11 -14301.81 27 18514.38 43 5887.90 

12 -14742.40 28 2459.21 44 5004.76 

13 18872.94 29 5341.69 45 -13942.00 

14 -7188.20 30 -14178.08 46 348.56 

15 -6814.95 31 4676.41 47 -149.44 

16 15840.40 32 -4726.63   
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Figure 17: The stress ratio of the 47-bar truss in the optimal solution 

 
Figure 18: Initial and optimum geometry of the 47-bar truss 
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Figure 19: The convergence curve of the 47-bar truss 

 
Figure 20: The optimal weight of the 47-bar truss in each independent run 

 

 

5. CONCLUSIONS 
 

In this study, the HGPG algorithm was utilized for the size and geometry optimization of 

truss structures. The research aimed to demonstrate the effectiveness of the HGPG algorithm 

in addressing combined size-geometry optimization problems. The algorithm takes into 

account continuous design variables for the location of joints and discrete design variables 

for cross-sectional areas. The main goal is to determine the optimal weight of the truss 

structures while satisfying local buckling, stress, and displacement constraints. The study 

employs a penalty function to convert a constrained problem into an unconstrained one. The 

HGPG was applied to four 2D and 3D benchmark examples. Comparative analysis with 

other optimization algorithms revealed that the HGPG is a highly effective method for such 
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engineering optimization problems, capable of reducing analysis costs while achieving 

lighter designs. 
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